Streamlining the Analysis of Accelerometry Data to Improve Understanding of Animal Behaviour

Lianli Gao¹, Hamish Campbell², Craig Franklin², Jane Hunter¹
¹eResearch Lab, The University of Queensland, Brisbane, Australia
²ECO-Lab, The University of Queensland, Brisbane, Australia
Overview

- Background
- System Objectives
- System Architecture
- Software User Interface
- Evaluation
 - Data collection
 - Evaluation Result
- Summary
- Future work
Background: Accelerometry Data

- Explosion in animal-attached accelerometers
 - To monitor animal movements and behaviour
- Collected an avalanche of raw tri-axial accelerometer data streams
 - Enable the identification of specific animals' behaviours

Animal ecologists

Used

Tri-axial accelerometers

Deployed on

Endangered Species

Pests

Production livestock

Animal accelerometry Data
Background: Accelerometry Data

Step 1 Collect data

Step 2 Analyse data

- running
- walking
- resting
- walking
- running
- feeding
- walking

Step 3 Visualization

Understand animal health, energy consumption, food/water requirements
Background: Accelerometry Data

Step 1
Collect data

Step 2
Analyse data

- running
- walking
- resting
- walking
- running
- feeding
- walking

Step 3 – Visualization

Understand animal health, energy consumption, food/water requirements
Limitations of raw 3D accelerometry data streams
- Numerical, unstructured, complex, imprecise, large volume
- Poor data representation

Problems
- Massive volumes of complex data
- No common markup
- Lack of automatic analysis
- Lack of pattern recognition tools
- Manual analysis
 - Onerous, time consuming, expensive
 - Poor quality, subjective

Wild animal activities
- Difficult to monitor and analyze

Background: Challenges

How to analyze???
How to improve???

What is 87???
What is the measurement unit??

A B C D E F G
1 07.06.37 18:00:00 87.361 14.06.87 12:
2 07.06.37 19:00:09 88.941 14.06.87 12:
3 07.06.37 19:00:49 87.541 14.06.87 12:
4 07.06.37 19:00:27 87.541 14.06.87 12:
5 07.06.37 19:00:36 88.941 14.06.87 12:
6 07.06.37 19:00:45 87.361 14.06.87 12:
7 07.06.37 19:00:54 87.541 14.06.87 12:
8 07.06.37 19:01:03 87.541 14.06.87 12:
9 07.06.37 19:01:12 87.541 14.06.87 12:
10 07.06.37 19:01:21 87.361 14.06.87 12:
11 07.06.37 19:01:30 87.541 14.06.87 12:

System objectives

1. Web-based repository
 - To upload and share
 - To search and retrieve
 tri-axial accelerometry animal datasets

2. Annotation services
 - visualize 3D accelerometry datasets and videos
 - Synchronized with video to compare with ground truth
 - Record, share and re-use expert knowledge
 - Using terms from pre-defined ontologies

3. Automated analysis services
 - Build activity recognition models
 - Species-specific classifier and cross species classifier

4. Simple statistical visualizations
 - understand the activity recognition results
System Architecture

SAAR – Semantic Annotation and Activity Recognition System
Screenshot of the SAAR upload user interface
Screenshot of SAAR Plot-Video visualization interface and the annotation interface
User interface when retrieving all the specific annotation to train a SVM activity classifier
Screenshot of the SAAR interface with human activity identification results
Evaluation - Data Collection

- Device: G6A
- 8 voluntary students & staffs
 - 4 males & 4 females
- 6 domestic dogs
- 3 badgers
Evaluation-Metrics

- Standard evaluation metrics
 - Accuracy
 \[\text{Accuracy} = \frac{\text{number of true positives} + \text{number of true negatives}}{\text{number of true positives} + \text{false positives} + \text{true negatives} + \text{true negatives}} \]
 - Precision
 \[\text{Precision} = \frac{\text{number of true positives}}{\text{number of true positives} + \text{false positives}} \]
 - Sensitivity
 \[\text{Sensitivity} = \frac{\text{number of true positives}}{\text{number of true positives} + \text{false negatives}} \]
 - Specificity
 \[\text{Specificity} = \frac{\text{number of true negatives}}{\text{number of true negatives} + \text{false negatives}} \]

<table>
<thead>
<tr>
<th>Test outcome</th>
<th>Type as determined by a classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ve</td>
<td>True positive</td>
</tr>
<tr>
<td>-ve</td>
<td>False negative</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>True positive</td>
<td>False positive</td>
</tr>
<tr>
<td>False negative</td>
<td>True negative</td>
</tr>
</tbody>
</table>
Evaluation-Result-1

Humans

Dogs
Evaluation-Result 2

Badger data, dog model
Evaluation - Conclusions

- High level classifiers performs better than low level classifiers
 - High level: accuracy > 96%, sensitivity > 97%, specificity > 96%
 - Low level: accuracy > 96%, sensitivity > 80%, precision > 80%
- Human classifier performs better than dog classifier which performs better than badger classifier
 - More noise the “wilder” the animals
- Species-specific classification models perform better than migrating the classification models across species, but migration still yields reasonable results
Summary

- The Semantic Annotation and Activity Recognitions system delivers
 - An easy-to-use Web-based repository
 - For accelerometer data streams
 - A set of semantic tagging, visualization services
 - For annotation meaning of accelerometer data streams
 - Activity recognition services
 - Accuracy decreases for more “unpredictable” animals
 - Accuracy decreases across species
 - BUT still very useful
Future work

- Integrate GPS data to track animal trajectory + add map visualization
- Apply captive models to wild animals
 - Dogs to dingoes
 - Birds to bats
 - Horses to camels
- Improve model accuracy
 - Evaluate different machine learning methods
Acknowledgement

- The China Scholarship Council
- Owen R Bidder, from the Swansea Moving Animal Research Team (SMART) at Swansea University College of Science, for providing access to the badger accelerometer data, and for providing comprehensive and useful feed-back
Questions?

- Thank you!
- Contact:
 - Lianli Gao: l.gao1@itee.uq.edu.au
 - Hamish Campbell: hamish.campbell@uq.edu.au
 - Craig Franklin: c.franklin@uq.edu.au
 - Jane Hunter: jane@itee.uq.edu.au
- Websites
 - SAAR: http://seas.metadata.net/saar/